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Environments 

Environment – Data structure (with two 
components below) that powers lexical scoping 

 

 

1. Named list (“Bag of names”) – each name 
points to an object stored elsewhere in 
memory. 

If an object has no names pointing to it, it 
gets automatically deleted by the garbage 
collector. 

• Access with: ls('env1')  
2. Parent environment – used to implement 

lexical scoping. If a name is not found in 
an environment, then R will look in its 
parent (and so on).  

• Access with: parent.env('env1') 

Four special environments 
1. Empty environment – ultimate ancestor of 

all environments 

• Parent: none 

• Access with: emptyenv()  
2. Base environment - environment of the 

base package 

• Parent: empty environment 

• Access with: baseenv()  
3. Global environment – the interactive 

workspace that you normally work in 

• Parent: environment of last attached 
package 

• Access with: globalenv()  
4. Current environment – environment that 

R is currently working in (may be any of the 
above and others) 

• Parent: empty environment 

• Access with: environment() 

1. Enclosing environment - an environment where the 
function is created. It determines how function finds 
value. 

• Enclosing environment never changes, even if the 
function is moved to a different environment. 

• Access with: environment(‘func1’) 

2. Binding environment - all environments that the 
function has a binding to. It determines how we find 
the function. 

• Access with: pryr::where(‘func1’) 

Example (for enclosing and binding environment): 

 

 

  

 

 

 

  

 

 

3. Execution environment - new created environments 
to host a function call execution. 

• Two parents : 

I. Enclosing environment of the function 

II. Calling environment of the function 

• Execution environment is thrown away once the 
function has completed. 

4. Calling environment - environments where the 
function was called. 

• Access with: parent.frame(‘func1’) 

• Dynamic scoping : 

• About : look up variables in the calling 
environment rather than in the enclosing 
environment 

• Usage : most useful for developing functions that 
aid interactive data analysis 

Function Environments 

Search path – mechanism  to look up objects, particularly functions. 

• Access with : search() – lists all parents of the global environment  
(see Figure 1) 

• Access any environment on the search path: 
as.environment('package:base') 

 

 

 

Figure 1 – The Search Path 

• Mechanism : always start the search from global environment, 
then inside the latest attached package environment. 

• New package loading with library()/require() : new package is 
attached right after global environment. (See Figure 2) 

• Name conflict in two different package : functions with the same 
name, latest package function will get called. 

 

 

 

 

 

 

 
 

Figure 2 – Package Attachment 

search() : 

'.GlobalEnv' ... 'Autoloads' 'package:base' 

library(reshape2); search() 

'.GlobalEnv'  'package:reshape2' ... 'Autoloads' 'package:base‘ 

NOTE: Autoloads : special environment used for saving memory by 
only loading package objects (like big datasets) when needed  

Search Path 

Binding Names to Values 

Assignment – act of binding (or rebinding) a name to a value in an 
environment. 

1. <- (Regular assignment arrow) – always creates a variable in the 
current environment 

2. <<- (Deep assignment arrow) - modifies an existing variable 
found by walking up the parent environments 

Warning: If <<- doesn’t find an existing variable, it will create 
one in the global environment. 

y <- 1 
e <- new.env() 
e$g <- function(x) x + y 
 
• function g enclosing environment is the global 

environment,  
• the binding environment is "e". 

Create environment: env1<-new.env() 

Created by: Arianne Colton and Sean Chen 
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Human readable description of any R data structure : 
 
 
Every Object has a mode and a class 
1. Mode: represents how an object is stored in memory 

• ‘type’ of the object from R’s point of view 
• Access with: typeof()  

2. Class: represents the object’s abstract type  
• ‘type’ of the object from R’s object-oriented programming 

point of view 
• Access with: class() 
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Data Structures 

1. Factors are built on top of integer vectors using two attributes : 
 
 
 

2. Useful when you know the possible values a variable may take, 
even if you don’t see all values in a given dataset.  Base Type (C Structure) 

S3 

R has three object oriented systems : 
1. S3 is a very casual system. It has no formal 

definition of classes. It implements generic 
function OO.  
• Generic-function OO - a special type of 

function called a generic function decides 
which method to call. 

  
 
 

• Message-passing OO - messages 
(methods) are sent to objects and the object 
determines which function to call.  

  
 
 
2. S4 works similarly to S3, but is more formal. 

Two major differences to S3 : 
• Formal class definitions - describe the 

representation and inheritance for each class, 
and has special helper functions for defining 
generics and methods.  

• Multiple dispatch -  generic functions can 
pick methods based on the class of any 
number of arguments, not just one. 

3. Reference classes are very different from S3 
and S4: 
• Implements message-passing OO - 

methods belong to classes, not functions.  
• Notation - $ is used to separate objects and 

methods, so method calls look like 
canvas$drawRect('blue').  

1. About S3 : 
• R's first and simplest OO system 
• Only OO system used in the base and stats 

package 
• Methods belong to functions, not to objects or 

classes. 
2. Notation :  

• generic.class() 
 

 
 
3.  Useful ‘Generic’ Operations 

• Get all methods that belong to the ‘mean’ 
generic: 
- Methods(‘mean’) 

• List all generics that have a method for the 
‘Date’ class : 
- methods(class = ‘Date’) 

4.  S3 objects are usually built on top of lists, or 
atomic vectors with attributes.  

• Factor and data frame are S3 class 
• Useful operations: 

 

Object Oriented (OO) Field Guide 

mean.Date() Date method for the         
generic - mean() 

Example: drawRect(canvas, 'blue') 

Language: R 

Example: canvas.drawRect('blue') 

Language: Java, C++, and C# 

Check if object is 
an S3 object 

is.object(x) & !isS4(x) or 
pryr::otype() 

Check if object 
inherits from a 
specific class    

inherits(x, 'classname')   

Determine class of 
any object                class(x) class(x) -> 'factor' 

levels(x)  # defines the set of allowed values 

Factors 

Warning on Factor Usage:  
1. Factors look and often behave like character vectors, they 

are actually integers. Be careful when treating them like 
strings.  

2. Most data loading functions automatically convert character 
vectors to factors. (Use argument stringAsFactors = FALSE 
to suppress this behavior) 

Object Oriented Systems 

R base types - the internal C-level types that underlie 
the above OO systems. 

• Includes : atomic vectors, list, functions, 
environments, etc. 

• Useful operation : Determine if an object is a base 
type (Not S3, S4 or RC) is.object(x) returns FALSE 

         Homogeneous    Heterogeneous 

   1d         Atomic vector List 

   2d                Matrix Data frame 

   nd      Array   

Note: R has no 0-dimensional or scalar types. Individual numbers  
or strings, are actually vectors of length one, NOT scalars.  

         typeof() class() 

strings or vector of strings character character 

numbers or vector of numbers    numeric numeric 

list list list 

data.frame list data.frame 

str(variable) 

• Internal representation : C structure (or struct) that 
includes : 

• Contents of the object  

• Memory Management Information 

• Type 

- Access with: typeof() 
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Function Basics 
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Functions 

Functions – objects in their own right 
All R functions have three parts: 

 

 

 

 

 

 

 

 

 

Every operation is a function call 

• +, for, if, [, $, { … 

• x + y is the same as `+`(x, y) 
 

 
 

Primitive Functions Function Arguments 

Return Values 

What is Lexical Scoping? 

• Looks up value of a symbol. (see 
"Enclosing Environment") 

• findGlobals() - lists all the external 
dependencies of a function 

 

 

 

 

 

 

 

 

• R relies on lexical scoping to find 
everything, even the + operator. 

Arguments – passed by reference and copied on modify 

1. Arguments are matched first by exact name (perfect matching), then 
by prefix matching, and finally by position. 

2. Check if an argument was supplied :  missing() 
 
 
 
 

3. Lazy evaluation – since x is not used stop("This is an error!") 
never get evaluated. 
 
 
 
 

4. Force evaluation 
 
 
 
 

5. Default arguments evaluation 
 

body() code inside the function 

formals() 
list of arguments which 
controls how you can 
call the function 

environment() 

“map” of the location of 
the function’s variables 
(see “Enclosing 
Environment”) 

Lexical Scoping 

f <- function() x + 1 

codetools::findGlobals(f) 

> '+' 'x'  

environment(f) <- emptyenv() 

f() 

# error in f(): could not find function “+”  

f <- function(x = ls()) { 
    a <- 1 
    x 
}  

f() -> 'a' 'x' ls() evaluated inside f 

f(ls()) ls() evaluated in global environment 

f <- function(x) { 
    force(x)  
    10 
} 

f <- function(x) { 
    10 
} 
f(stop('This is an error!')) -> 10   

i <- function(a, b) { 
    missing(a) -> # return true or false 
} 

• Last expression evaluated or explicit return().   
Only use explicit return() when returning early. 

• Return ONLY single object.  
Workaround is to return a list containing any number of objects. 

• Invisible return object value - not printed out by default  when you 
call the function. 

f1 <- function() invisible(1) 

Influx Functions 

Replacement Functions 

What are Primitive Functions? 

1. Call C code directly with .Primitive() and contain no R code 

 

 

 

2. formals(), body(), and environment() are all NULL 

3. Only found in base package 

4. More efficient since they operate at a low level 

print(sum) :  

> function (..., na.rm = FALSE)  .Primitive('sum') 

What are Influx Functions? 

1. Function name comes in between its arguments, like + or – 

2. All user-created infix functions must start and end with %. 

 

 

 

3. Useful way of providing a default value in case the output of 
another function is NULL: 

 

`%+%` <- function(a, b) paste0(a, b) 

'new' %+% 'string' 

`%||%` <- function(a, b) if (!is.null(a)) a else b 

function_that_might_return_null() %||% default value 

What are Replacement Functions? 

1. Act like they modify their arguments in place, and have the 
special name xxx <-  

2. Actually create a modified copy. Can use pryr::address() to 
find the memory address of the underlying object 

 

 
`second<-` <- function(x, value) { 
    x[2] <- value 
    x 
} 
x <- 1:10 
second(x) <- 5L 

Note: the backtick (`), lets you refer to 
functions or variables that have 
otherwise reserved or illegal names.  
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Subsetting 

1. Simplifying subsetting  
• Returns the simplest possible 

data structure that can represent 
the output 

2. Preserving subsetting 
• Keeps the structure of the output 

the same as the input.  
• When you use drop = FALSE, it’s 

preserving 
 
 

 
 
 
 
 
 
 
Simplifying behavior varies slightly 
between different data types:  
1. Atomic Vector  

• x[[1]] is the same as x[1] 
2. List  

• [ ] always returns a list  
• Use [[ ]] to get list contents, this 

returns a single value piece out of 
a list 

3. Factor  
• Drops any unused levels but it 

remains a factor class 
4. Matrix or Array  

• If any of the dimensions has 
length 1, that dimension is 
dropped 

5. Data Frame  
• If output is a single column, it 

returns a vector instead of a data 
frame 

 
 

Data Frame Subsetting 

$ Subsetting Operator 

Data Frame – possesses the characteristics of both lists and  
matrices. If you subset with a single vector, they behave like lists; if  
you subset with two vectors, they behave like matrices  
1. Subset with a single vector : Behave like lists 

 

 
2. Subset with two vectors : Behave like matrices 

 

 
The results are the same in the above examples, however, results are 
different if subsetting with only one column. (see below) 
1. Behave like matrices 

 
 
• Result: the result is a vector 

2. Behave like lists 
 
 
• Result: the result remains a data frame of 1 column    

1. About Subsetting Operator 
• Useful shorthand for [[ combined with character subsetting 
 
 

2. Difference vs. [[  
• $ does partial matching, [[ does not 

 

 
3. Common mistake with $  

• Using it when you have the name of a column stored in a variable 

Examples 

  Simplifying*   Preserving 

Vector x[[1]]  x[1] 

List x[[1]]  x[1] 

Factor x[1:4, drop = T]  x[1:4] 

Array   x[1, ] or x[, 1]  x[1, , drop = F] or 
x[, 1, drop = F] 

Data 
frame x[, 1] or x[[1]]    x[, 1, drop = F] or 

x[1] 

Subsetting returns a copy of the 
original data, NOT copy-on modified 

x <- list(abc = 1) 
x$a -> 1        # since "exact = FALSE" 
x[['a']] ->       # would be an error 

var <- 'cyl' 
x$var   
# doesn't work, translated to x[['var']] 
# Instead use x[[var]] 

1. Lookup tables  (character subsetting) 

 
 
 
 
 

2. Matching and merging by hand (integer subsetting) 
Lookup table which has multiple columns of information: 
 
 
 
 
 
First Method 
 
 
Second Method 
 

3. Expanding aggregated counts (integer subsetting) 
• Problem: a data frame where identical rows have been 

collapsed into one and a count column has been added 
• Solution: rep() and integer subsetting make it easy to 

uncollapse the data by subsetting with a repeated row index: 
rep(x, y)  rep replicates the values in x, y times. 

  
 
 
 

4. Removing columns from data frames (character subsetting) 
There are two ways to remove columns from a data frame: 
 
 

5. Selecting rows based on a condition (logical subsetting) 
• This is the most commonly used technique for extracting 

rows out of a data frame. 

x <- c('m', 'f', 'u', 'f', 'f', 'm', 'm') 
lookup <- c(m = 'Male', f = 'Female', u = NA) 
lookup[x] 
> m   f   u   f   f   m   m  
> 'Male'  'Female'  NA  'Female'  'Female'  'Male'  'Male' 
unname(lookup[x]) 
> 'Male'  'Female'  NA  'Female'  'Female'  'Male'  'Male' 

grades <- c(1, 2, 2, 3, 1) 
info <- data.frame( 
    grade = 3:1, 
    desc = c('Excellent', 'Good', 'Poor'), 
    fail = c(F, F, T) 
) 

df1$countCol is c(3, 5, 1) 
rep(1:nrow(df1), df1$countCol)  
> 1 1 1 2 2 2 2 2 3 

Set individual columns to NULL df1$col3 <- NULL 
Subset to return only columns you want df1[c('col1', 'col2')] 

 df1[c('col1', 'col2')] 

 df1[, c('col1', 'col2')] 

 str(df1[, 'col1']) -> int [1:3] 

str(df1['col1']) -> ‘data.frame’  

 x$y is equivalent to x[['y', exact = FALSE]] 

df1[df1$col1 == 5 & df1$col2 == 4, ] 

id <- match(grades, info$grade) 
info[id, ] 

rownames(info) <- info$grade 
info[as.character(grades), ] 
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Debugging, Condition Handling and Defensive Programming 

1. traceback() or RStudio's error inspector  

• Lists the sequence of calls that lead to 
the error 

2. browser() or RStudio's breakpoints tool  

• Opens an interactive debug session at 
an arbitrary location in the code 

3. options(error = browser) or RStudio's 
"Rerun with Debug" tool  

• Opens an interactive debug session 
where the error occurred 

• Error Options: 

options(error = recover)   

• Difference vs. 'browser': can enter 
environment of any of the calls in the 
stack 

options(error = dump_and_quit)  

• Equivalent to ‘recover’ for non-
interactive mode 

• Creates last.dump.rda in the current 
working directory 

In batch R process : 

 

 

 

 

 

 

 

 

In a later interactive session : 

 
 

Condition Handling of Expected Errors 

Defensive Programming 

dump_and_quit <- function() { 

   # Save debugging info to file 
last.dump.rda 

   dump.frames(to.file = TRUE) 

   # Quit R with error status 
   q(status = 1) 

} 
options(error = dump_and_quit) 

load("last.dump.rda") 

debugger()   

result = tryCatch(code,  
error = function(c) "error", 
warning = function(c) "warning", 
message = function(c) "message" 

) 

Use conditionMessage(c) or c$message to extract the message 
associated with the original error. 

1. Communicating potential problems to users: 
I. stop()  

• Action : raise fatal error and force all execution to terminate 
• Example usage : when there is no way for a function to continue 

II. warning() 
• Action : generate warnings to display potential problems 
• Example usage : when some of elements of a vectorized input are 

invalid 
III. message() 

• Action : generate messages to give informative output 
• Example usage : when you would like to print the steps of a program 

execution 
2. Handling conditions programmatically: 

I. try() 
• Action : gives you the ability to continue execution even when an error 

occurs 
II. tryCatch() 

• Action : lets you specify handler functions that control what happens 
when a condition is signaled 

Basic principle : "fail fast", to raise an error as soon as something goes wrong 

1. stopifnot() or use ‘assertthat’ package - check inputs are correct 

2. Avoid subset(), transform() and with() - these are non-standard 

evaluation, when they fail, often fail with uninformative error messages. 

3. Avoid [ and sapply() - functions that can return different types of output. 

• Recommendation : Whenever subsetting a data frame in a function, you 

should always use drop = FALSE 

Subsetting continued 

Boolean Algebra vs. Sets  
(Logical and Integer Subsetting) 

1. Using integer subsetting is more effective 
when: 

• You want to find the first (or last) TRUE. 

• You have very few TRUEs and very 
many FALSEs; a set representation may 
be faster and require less storage. 

2. which() - conversion from boolean 
representation to integer representation 

 

 

• Integer representation length : is always 
<= boolean representation length  

• Common mistakes : 

I. Use x[which(y)] instead of x[y]  

II.  x[-which(y)] is not equivalent to 
x[!y]  

Subsetting with Assignment 
1. All subsetting operators can be combined 

with assignment to modify selected values 
of the input vector. 

 

 

2. Subsetting with nothing in conjunction with 
assignment : 

• Why : Preserve original object class and 
structure 

 

 

Recommendation:  

Avoid switching from logical to integer 
subsetting unless you want, for example, the 
first or last TRUE value 

df1[] <- lapply(df1, as.integer)  

which(c(T, F, T F)) -> 1 3  

df1$col1[df1$col1 < 8] <- 0 
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