Understanding PCA using Shiny and Stack Overflow data

Understanding PCA using Shiny and Stack Overflow data

February 26, 2018

Principal component analysis (PCA) is a powerful approach for exploring high-dimensional data, but can be challenging for learners to comprehend. In this talk, I will walk through a practical and interactive explanation of what PCA is and how it works. As a case study I’ll explore a domain that many data analysts and data scientists are familiar with: programming languages and technologies, as understood through traffic to Stack Overflow questions. We will explore how interactive visualization using Shiny gives us insight into the complex, real-world relationships in high-dimensional datasets.

View Slides

About the speaker

Julia Silge

Software Engineer, RStudio, PBC

Julia Silge is a data scientist and software engineer at RStudio PBC where she works on open source modeling tools. She is an author, an international keynote speaker, and a real-world practitioner focusing on data analysis and machine learning practice. Julia loves text analysis, making beautiful charts, and communicating about technical topics with diverse audiences.