Join us at rstudio::conf(2022) to sharpen your R skills. | July 25-28th in D.C.
Learn More
rstudio::conf(2022) | July 25-28th in D.C. 7/25 - 7/28 in D.C.
The premier IDE for R
RStudio anywhere using a web browser
Put Shiny applications online
Shiny, R Markdown, Tidyverse and more
Next level training for you and your team
Do, share, teach and learn data science
An easy way to access R packages
Let us host your Shiny applications
A single home for R & Python Data Science Teams
Scale, develop, and collaborate across R & Python
Easily share your insights
Control and distribute packages
RStudio
RStudio Server
Shiny Server
R Packages
RStudio Academy
RStudio Cloud
RStudio Public Package Manager
shinyapps.io
RStudio Team
RStudio Workbench
RStudio Connect
RStudio Package Manager
rstudio::conf 2020 programming
Technical Debt is a Social Problem
February 5, 2020
Technical debt is a big problem for the R community. Even though R has excellent support for testing, documentation and packaging code it has the reputation that it is not suitable for production applications because data scientists don’t pay enough attention to technical debt within their codebases. Most people think of technical debt as an engineering problem. We choose to make our current work cheaper at the expense of needing to do more work down the road. But when you look closely at the root causes of technical debt they are almost always about interpersonal relationships. Developers have trouble empathizing with other users of their code and so don’t spend the time to make that code easy for future developers to use and understand. In this talk I argue that we should think about technical debt as a social problem because it gives us insight into why it’s so hard to pay back. I then provide a practical roadmap of how to introduce best practices into your data science team.
View Slides.
Gordon is a lawyer by training, and has worked with survey companies, correctional facilities, and web properties to improve their data analysis processes to allow more people to make better decisions. He is currently a Senior Data Scientist at Socure where he develops data products to help protect people against financial fraud.