Join us at rstudio::conf(2022) to sharpen your R skills. | July 25-28th in D.C.
Learn More
rstudio::conf(2022) | July 25-28th in D.C. 7/25 - 7/28 in D.C.
The premier IDE for R
RStudio anywhere using a web browser
Put Shiny applications online
Shiny, R Markdown, Tidyverse and more
Next level training for you and your team
Do, share, teach and learn data science
An easy way to access R packages
Let us host your Shiny applications
A single home for R & Python Data Science Teams
Scale, develop, and collaborate across R & Python
Easily share your insights
Control and distribute packages
RStudio
RStudio Server
Shiny Server
R Packages
RStudio Academy
RStudio Cloud
RStudio Public Package Manager
shinyapps.io
RStudio Team
RStudio Workbench
RStudio Connect
RStudio Package Manager
Shiny Dev Con 2016
Building interactive tools for exploratory data analysis
March 12, 2016
While Shiny apps are generally built to communicate the results of an analysis, Shiny is just as well suited to building interactive tools to help you conduct your analysis. We call interactive Shiny tools “gadgets”, and they differ from Shiny apps in that they are packaged as functions to be called instead of apps to be visited, and they can return values to the caller. In this talk, we’ll show you some examples of Shiny gadgets and show you how to build your own.
Hadley Wickham is the Chief Scientist at RStudio, a member of the R Foundation, and Adjunct Professor at Stanford University and the University of Auckland. He builds tools (both computational and cognitive) to make data science easier, faster, and more fun. You may be familiar with his packages for data science (the tidyverse: including ggplot2, dplyr, tidyr, purrr, and readr) and principled software development (roxygen2, testthat, devtools, pkgdown). Much of the material for the course is drawn from two of his existing books, Advanced R and R Packages, but the course also includes a lot of new material that will eventually become a book called “Tidy tools”.